〜埼玉大学 島村徹也先生の〜 ★ZoomによるWeb配信セミナー★
【”画像” / ”音”処理技術 講座】
AI時代において、”画像”と”音”は、処理対象の中心となっています。ここ10年間での、機械の物体認識の能力、周囲・環境の把握能力は、驚異的です。このように急激に機械学習・深層学習の能力が進展して中で、”画像”処理と”音”処理を基本から学ぶことは、益々重要になって行くでしょう。
本講座では、”画像”講座と”音”講座に大別し、それぞれの実環境で必要とされる処理技術を基礎から応用まで、わかりやすく講義します。”画像”では、機械学習での前処理に活用できるフィルタリング技術と、最近特に注目度が向上してきた画質評価、を取り上げます。”音”では、設備機械などの保全に役立つ、故障検知・故障予知技術を解説します。いずれも、まとまったテキストとかは存在しない内容であり、新しい知見が得られると期待できます。
さらに、より広い括りで、深層学習と適応フィルタ、時系列データ分析の講座を準備しました。より俯瞰的な立ち位置から、画像と音を捉えることができるようになっています。 |
島村徹也(しまむらてつや) 氏
埼玉大学大学院 理工学研究科 数理電子情報部門 教授(工学博士)
|
2024年12月24日(火)10:00-16:30
… 53,900円(税込)/1名、66,000円(税込)/1口(3名まで)
本セミナーでは、内容の理解を深めて頂くことを前提に、時系列データの分析について網羅的に解説します。前半後半として基礎編と応用編に大きく分け、基礎的事項から最先端の応用までをカーバーします。
基礎編では、時系列データの例からはじめ、実際に処理することを前提にディジタル信号処理で必要とされる技術を紹介します。そして、統計的処理に発展し、時系列データ分析の基礎を把握し、現在広く用いられているスペクトル分析の方法を網羅します。また、様々な性質のデータへの対応を考慮して、時変性対策法や平滑化、予測などが可能なカルマンフィルタ等についても言及します。
応用編では、実際に主流となっているスペクトル解析のパラメトリック法を適用する場合に遭遇する問題を指摘し、その解決方法やより良い結果を得るためのノウハウを細部まで解説します。そして、様々な時系列データの応用例を紹介した後、有力な1つの拡張法として高次統計量について発展します。また、一括処理と適応処理の両面からの検討を要する場合があることから、最後に適応フィルタについてその概念と利用の仕方、最近の研究動向などを説明します。
2025年1月28日(火)10:00-16:30
… 53,900円(税込)/1名、66,000円(税込)/1口(3名まで)
今、Image Quality Assessmentが急速に進展し、普及し始めています。IQAと略して呼ばれるこの技術は、産業界では、特に海外において、画像の品質を高精度に計測する先端の方法として取り入れられつつあります。
これまでの、多くの人に評価値を求め、それらを集計していく主観的評価方法から、コンピュータに自動的に評価値を算出してもらう客観的評価法へとシフトして行っています。しかしながら、国内では、客観的評価方法の中のPSNRなどのごく限られた評価方法しか用いられていないことがよくありますが、今では1枚の画像が与えられれば、参照画像なしでも、Blind
IQAでその評価値を高精度に算出できます。 得られた画像や処理した画像の良し悪しを自動判別、判読可能かどうかの自動判断、キズや損傷画像の検査に利用可能です。
本セミナーでは、基礎から最先端の方法までを丁寧に解説し、その実際の効果的な利用法について各種ご紹介します。
2025年2月20日(木)10:00-16:30
… 53,900円(税込)/1名、66,000円(税込)/1口(3名まで)
画像処理やコンピュータビジョンにおけるAI技術の成功から、次は音の利用だ、という流れができつつあります。特に、これまで産業界から重大な問題であると認識されていたにも関わらず、実際には人間の手に頼らざるを得なかった、機械の故障検知や故障予知の問題に、音が有効に利用できる可能性が出てきました。
本セミナーでは、講師のこれまでの音声研究のノウハウと、各種企業との共同研究の経験値を組み合わせ、音が故障検知や故障予知にどのように利用できるかを説明します。ディジタル信号処理の基礎から、音の特徴量の求め方までを平易に解説した後、それらの故障検知への利用方法、およびその故障予知への発展の方法について、可能なアプローチをご紹介します。また、実際の環境音、騒音などに鑑みて、比較的平易に取り組める雑除去手法の紹介も行います。
実際の現場で、どのようなマイクをどのように取り付けるか等のノウハウもお伝えする予定です。共同研究を実施してきた経験から、本セミナーでは特徴量ベースの方法と学習ベースの方法の二つを軸として、各種特徴量の計算を紹介しつつ、学習ではCNNを中心に、最適な方法の導出の考え方について、また最近の動向に触れ、異常データが少ない場合の対策(MT法、AE法等)をも説明する予定です。我々の経験手法にも言及します。
|