ホーム 総合日程表  Web配信  機械学習  画像認識  8月  9月  10月  11月 

〜埼玉大学 島村徹也先生の〜    ★ZoomによるWeb配信セミナー★

【”画像” / ”音”処理技術 講座】

 AI時代において、”画像”と”音”は、処理対象の中心となっています。ここ10年間での、機械の物体認識の能力、周囲・環境の把握能力は、驚異的です。このように急激に機械学習・深層学習の能力が進展して中で、”画像”処理と”音”処理を基本から学ぶことは、益々重要になって行くでしょう。
 本講座では、”画像”講座と”音”講座に大別し、それぞれの実環境で必要とされる処理技術を基礎から応用まで、わかりやすく講義します。”画像”では、機械学習での前処理に活用できるフィルタリング技術と、最近特に注目度が向上してきた画質評価、を取り上げます。”音”では、設備機械などの保全に役立つ、故障検知・故障予知技術を解説します。いずれも、まとまったテキストとかは存在しない内容であり、新しい知見が得られると期待できます。 さらに、より広い括りで、深層学習と適応フィルタ、時系列データ分析の講座を準備しました。より俯瞰的な立ち位置から、画像と音を捉えることができるようになっています。
島村徹也(しまむらてつや) 氏
 埼玉大学大学院 理工学研究科 数理電子情報部門 教授(工学博士)

        


『音による故障検知および故障予知』

 2024年9月2日(月)10:00-16:30 
      … 53,900円(税込)/1名、66,000円(税込)/1口(3名まで)

画像処理やコンピュータビジョンにおけるAI技術の成功から、次は音の利用だ、という流れができつつあります。特に、これまで産業界から重大な問題であると認識されていたにも関わらず、実際には人間の手に頼らざるを得なかった、機械の故障検知や故障予知の問題に、音が有効に利用できる可能性が出てきました。
 本セミナーでは、講師のこれまでの音声研究のノウハウと、各種企業との共同研究の経験値を組み合わせ、音が故障検知や故障予知にどのように利用できるかを説明します。ディジタル信号処理の基礎から、音の特徴量の求め方までを平易に解説した後、それらの故障検知への利用方法、およびその故障予知への発展の方法について、可能なアプローチをご紹介します。また、実際の環境音、騒音などに鑑みて、比較的平易に取り組める雑除去手法の紹介も行います。
  実際の現場で、どのようなマイクをどのように取り付けるか等のノウハウもお伝えする予定です。共同研究を実施してきた経験から、本セミナーでは特徴量ベースの方法と学習ベースの方法の二つを軸として、各種特徴量の計算を紹介しつつ、学習ではCNNを中心に、最適な方法の導出の考え方について、また最近の動向に触れ、異常データが少ない場合の対策(MT法、AE法等)をも説明する予定です。我々の経験手法にも言及します。


『ディジタル信号による統計的信号処理の基本原理の理解とその応用』

 2024年10月18日(金)10:00-16:30 
      … 53,900円(税込)/1名、66,000円(税込)/1口(3名まで)

本セミナーでは、ディジタル信号処理の中でも特に統計的信号処理と呼ばれる統計を扱う信号処理技術に関して、詳しくご説明致します。
 音、画像、通信等のデータは不規則信号です。不規則信号を処理するためには不規則信号処理が必要です。それが統計的信号処理です。具体的にはスペクトル解析、適応信号処理が中心的となりますが、それらの理解を助けるためにディジタル信号処理の基本概念からはじめ、スペクトル解析の準備としてフ−リエ変換について定義の他に物理的解釈に触れ、その応用に至るまでをカバーします。
 理工系の大学では、必ずと言っていいほど、ディジタル信号処理に関する講義が行われます。しかしながら、学部の講義では時間の関係上、統計的信号処理まで進めないのが現状です。よって、現実問題として多く遭遇する不規則信号の取り扱いは、実際に対応される企業技術力に依存することになりますが、総計的信号処理に利用されるアルゴリズムの複雑さは、その理解の妨げが企業展開のネックになることが懸念されます。
  本セミナーでは、個々のアルゴリズムの本来の狙いは何かを理解することを目的とし、丁寧な説明を心がけ、参加者の理解の一助となることを目指します。また、音、画像、通信等への応用例を複数挙げ、実際にどのように利用可能かのヒントを示します。圧縮センシング、独立成分分析、カルマンフィルタなどの最近の技術についても紹介し、それらも含め、講師のこれまでの企業との共同研究の経験から統計的信号処理の利用のノウハウを解説致します。さらには最近の統計的信号処理技術の進展や動向に関しても言及する予定です。


『深層学習と適応フィルタ:2つの概念の理解と使い分け』

 2024年11月20日(水)10:00-16:30 
      … 53,900円(税込)/1名、66,000円(税込)/1口(3名まで)

深層学習の登場から約10年が経ち、今その発展は継続されています。一方で、問題点や限界もわかったきたことで、これからは同じ、あるいは類似する“学習”をアルゴリズムとする、適応フィルタとの使い分けが必要とされると考えられます。そこで、この2つの概念、深層学習と適応フィルタを別々に整理し、それぞれの長所短所を明らかにしながら、実際の応用における”うまい使い分け”について解説を試みることにします。
 本セミナーでは、内容の理解を深めて頂くことを前提に、まず人工知能(AI)について網羅的に解説します。ここまでのAIの歴史について概観しながら、その性質について特に得意・不得意とするものを、例を用いて示します。そして、AIをニューラルネットワークと捉え、これまでのニューラルネットワークの技術的な進展を説明します。その進展の中で、今日使われる技術のポイントになったものを、応用面から捉え、大きく通信と音(特には音声)への利用例として紹介します。
 続いて、適応フィルタについて解説します。1つの技術を紹介することに限定せず、複数の有力な適応処理方法の紹介を心がけます。また、具体的な応用例を紹介します。そして、特に音と通信への応用を取り上げ、ニューラルネットワークと適応フィルタの利用の仕方を解説し、双方の利用の仕方と得られる結果の違い、長所・短所を示します。さらに、音声強調問題において、深層学習の最先端研究事例を示しながら、適応フィルタとの処理方法との違いを明らかにし、比較検討を行います。これまでの深層ニューラルネットワークと適応フィルタの研究を振り返り、今現在で言えること、そして今後の研究テーマとして考えられることにまで言及する予定です。


『時系列データの分析について:基礎と応用』

 2024年12月27日(火)10:00-16:30 
      … 53,900円(税込)/1名、66,000円(税込)/1口(3名まで)

本セミナーでは、内容の理解を深めて頂くことを前提に、時系列データの分析について網羅的に解説します。前半後半として基礎編と応用編に大きく分け、基礎的事項から最先端の応用までをカーバーします。
 基礎編では、時系列データの例からはじめ、実際に処理することを前提にディジタル信号処理で必要とされる技術を紹介します。そして、統計的処理に発展し、時系列データ分析の基礎を把握し、現在広く用いられているスペクトル分析の方法を網羅します。また、様々な性質のデータへの対応を考慮して、時変性対策法や平滑化、予測などが可能なカルマンフィルタ等についても言及します。
 応用編では、実際に主流となっているスペクトル解析のパラメトリック法を適用する場合に遭遇する問題を指摘し、その解決方法やより良い結果を得るためのノウハウを細部まで解説します。そして、様々な時系列データの応用例を紹介した後、有力な1つの拡張法として高次統計量について発展します。また、一括処理と適応処理の両面からの検討を要する場合があることから、最後に適応フィルタについてその概念と利用の仕方、最近の研究動向などを説明します。