1口(1社3名まで受講可能)でのお申込は、

 受講料  が格安となります。


☆☆☆Web配信セミナー☆☆☆

『小規模データに対する機械学習の効果的適用法』

〜関数推定 / 異常検知 / 深層学習 / 進化的機械学習〜
 



 S230713AW



 ☆☆☆本セミナーは、Zoomを使用して、行います。☆☆☆


開催日時:2023年11月22日(水)10:30-16:30
受 講 料:1人様受講の場合 51,700円[税込]/1名
     
1口でお申込の場合 62,700円[税込]/1口(3名まで受講可能)

 ★本セミナーの受講にあたっての推奨環境は「Zoom」に依存しますので、ご自分の環境が対応しているか、
 お申込み前にZoomのテストミーティング(http://zoom.us/test)にアクセスできることをご確認下さい。

 ★インターネット経由でのライブ中継ため、回線状態などにより、画像や音声が乱れる場合があります。
 講義の中断、さらには、再接続後の再開もありますが、予めご了承ください。

 ★受講中の録音・撮影等は固くお断りいたします。

…関連講座…【業務で機械学習を有効に活用するための講座】


講 師

 

 長尾智晴(ながおともはる) 氏 

   横浜国立大学 大学院環境情報研究院 YNU人工知能研究拠点長 / 教授(工学博士)

 <経歴、等>  東京工業大学大学院出身.東京工業大学工学部助手・助教授を経て,2001年より現職.経産省NEDO「共進化AIプロジェクト」採択課題研究代表者,横浜国立大学発ベンチャー 株式会社マシンインテリジェンス取締役CTOを兼務.
 <研究>  知能情報学/進化計算法/機械学習/感性情報処理/知的画像処理/医工連携工学など.
 <学会>  情報処理学会,電子情報通信学会,人工知能学会,進化計算学会,IEEEなどに所属して各学会で活動中.

 講義項目

 

 1 機械学習の現状と課題
  1.1 人工知能と機械学習
  1.2 機械学習の種類と方法
  1.3 教師あり/なし/半教師あり学習
  1.4 深層学習(ディープラーニング)概論
  1.5 少量データを用いた機械学習とは?


 2 少量データを用いた機械学習1:関数推定
  2.1 ベイズ最適化に基づく関数推定
  2.2 遺伝的プログラミング(GP)による関数推定
  2.3 CGP(Cartesian GP)による関数推定


 3 少量データを用いた機械学習2:異常検知
  3.1 1クラスSVM(Support Vector Machine)
  3.2 CAE(Convolutional Auto Encoder)による異常検知
  3.3 異常検知における学習データの水増し


 4 少量データを用いた機械学習3:少量データによる深層学習
  4.1 CG(Computer Graphics)を用いた機械学習
  4.2 GAN(Generative Adversarial Network)による水増し
  4.3 転移学習と蒸留・浸透学習(Percolative Learning)


 5 少量データを用いた機械学習4:進化的機械学習
  5.1 進化計算法の原理と特徴
  5.2 処理プロセスの自動生成
  5.3 分かり易い分類器の自動生成
  5.4 CS(Classifier System)によるルールの学習


 6 AIの業務への導入方法
  6.1 AI導入時の注意点
  6.2 AI人材の育成方法について


 7 まとめ



 お1人様      受講申込要領 1口(1社3名まで) 受講申込要領 セミナー 総合日程 画像認識 セミナー日程
 新宣伝 セミナー日程