1口(1社3名まで受講可能)でのお申込は、

 受講料 1口(1社3名まで受講可能)でのお申込みは、受講料5 が格安となります。

     


 自己位置推定・マッピングの
 最新技術動向
<カメラ,IMU,無線>



vSLAM/visual inertial SLAM , IMU-odometry/IMU-PDR ,
無線(BLE,wi-fi)を用いた屋内測位




 S191220N

----------------------------------

 


開催日時:2019年12月20日(金) 10:30-16:30 (10:00受付開始)

会  オームビル(東京都千代田区神田錦町3‐1)
                     【地下鉄】
                        メトロ東西線『竹橋駅』徒歩3分
                        都営三田線・新宿線・メトロ半蔵門線『神保町駅』徒歩7分
                        都営新宿線・メトロ千代田線『小川町駅』徒歩7分
                        メトロ丸ノ内線『淡路町駅』徒歩8分
                     【JR】
                        中央線・山手線・京浜東北線『神田駅』徒歩10分
                        中央線・総武線『御茶ノ水駅』徒歩11分

受 講 料:1人様受講の場合 47,000円[税別] / 1名

     1口でお申込の場合 59,000円[税別] / 1口(3名まで受講可能)

画像認識セミナー日程表  新宣伝セミナー日程表

 


<内山先生のセミナー>
〇 12月13日(金) 〇  自己位置推定・マッピングのためのコンピュータビジョン・画像処理技術
                  ~structure from motion(SfM)とvisual SLAMのポイント~

 

 講 師


 内山 英昭 氏    九州大学 附属図書館 准教授


            < 略 歴 >
               2006年3月 慶應義塾大学 理工学部 情報工学科 卒業
               2007年9月 慶應義塾大学大学院 開放環境科学専攻 修士課程 修了
               2010年9月 慶應義塾大学大学院 開放環境科学専攻 博士課程 修了
               2010年10月-2012年6月 フランス国立情報学自動制御研究所 博士研究員
               2012年7月-2014年3月 株式会社 東芝 研究開発センター
               2014年4月 九州大学 大学院システム情報科学研究院 助教
               2018年4月 現職

               拡張現実感のためのコンピュータビジョン技術の研究に従事.2012年より3年間,拡張現実感に関する
               国際会議International Symposium on Mixed and Augmented Reality(ISMAR)の論文選定委員を歴
               任.2015年のISMAR及び2016年のVR学会で開催されたvisual SLAMの性能を競うトラッキングコンペ
               ティションを運営.visual SLAMのオープンソースのライブラリであるATAM(Abecedary Tracking and
               Mapping)を開発[1].拡張現実感に用いられる位置合わせ技術に関する本[2]や解説論文[3]を執筆.

                  [1] https://github.com/CVfAR/ATAM
                  [2] AR(拡張現実)技術の基礎・発展・実践 (設計技術シリーズ),科学情報出版(第一章担当)
                  [3] E.Marchand, H.Uchiyama and F. Spindler, “Pose Estimation for Augmented Reality:
                    A Hands-On Survey,” IEEE Transactions on Visualization and Computer Graphics,
                    vol.22, pp.2633-2651, 2016.

 講義項目

     自己位置推定・マッピングは,ドローン,ロボットや自動車の自動走行からスマートフォン向けAR/VRにいたるまで多岐
   にわたるアプリケーションで用いられつつある技術です.特に,カメラを用いたものをvisual SLAM(vSLAM),さらに,IMU
   を併用したものをvisual-inertial SLAM(VIS)と呼ばれています.写真測量などの3次元計測(マッピング)とは表裏一体の関
   係にあります.その背景にある技術は,カメラ幾何・画像処理に基づくコンピュータビジョンです.他のセンサと比べ,セン
   チ単位の位置・方向推定,高フレームレートな推定,さらには空間認識と組み合わせた高度な制御を実現できることが特
   徴です.

    デバイスの自己位置推定や空間形状認識(マッピング)は,自動走行制御からナビゲーション,写真測量などに用いられ
   る基盤技術です.近年,カメラを用いたvisual SLAMの技術革新に伴い,ARCoreやARKitに代表されるように,スマートフォ
   ン向けの拡張現実感アプリケーションなどを実装しやすい環境が整いつつあります.今後も高精度化・省エネ化に向けて
   研究が発展していくと考えられます.そこで,本セミナーでは,様々なセンサーを用いた自己位置推定技術を概説いたしま
   す.
    まず初めに,近年発展の著しい自己位置推定・マッピング技術として,カメラを用いたvisual SLAMの歴史から最新の技術

   動向までを概説いたします.特にORB-SLAMを実例とした処理手順および高精度化のポイントを解説します.またMicrosoft
   HololensやGoogle Tangoなどに実装されているInertial Measurement Unit(IMU)とカメラの両方を利用したvisual inertial SLAMに
   ついても概説します.
    次にvSLAMと比べて非常に省エネなIMU単体のみで自己位置推定(odometry)を行うDead Reckoning(DR),wifiやbluetooth
    low energy(BLE)などの無線を用いた屋内測位技術も紹介いたします.特に,人間の歩行軌跡を対象としたPedestrian Dead    
   Reckoning(PDR)に関し,国際会議で開催されたコンペティションに参加するために開発した技術を説明いたします. 
    本セミナーは,画像処理や幾何計算の基礎知識があり,自己位置推定問題に対して,実務における問題解決を目指せ
   るための知識を身に着けることを目的といたします.vSLAMに加え,IMUや無線を用いた技術を包括的に学びたい方を
   対象とします.



  1. vSLAMの原理と画像処理技術

  2. vSLAMの種類

  3. ORB-SLAMを例とした実装の詳細

  4. IMUを用いたDead Reckoning

  5. BLEを用いた屋内測位 




画像認識セミナー日程表  新宣伝セミナー日程表